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I.

ABSTRACT

This is Part II of a two—part paper which continues the unification of sto— I ~chastic comparisons . Many coimnonly used multivariate densities are shown to be I
G—ordered and , in fact , each such density may be used as the kernel function in the h
integral transform for the preservation of C—monotonicity . We show tha t any ch ip— -

tically—contoured density is C—ordered . We present an application of C—ordered

functions to certain well—known tests of a multivariate hypothesis. Sufficient con-

ditions on the distribution of the observations are determined so that the tests have -~

G—monotone increasing power functions. 
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1. Introduction and Sumary.

This is Part II of a two—part paper which generalizes a rearrangement ordering,

develops the theory of functions isotonic with respect to the more general ordering,

and presents applications in statistics. In Part I we defined reflection ordering

(a generalization of transposition ordering) and C—ordered functions (a generalization

of functions decreasing in transposition (DT)). (See Hollander, Prosehan, and

Sethuramen (1977) for definitions of transposition ordering and DT functions.) In

Part II we present applications of C—ordered functions in statistics.

In Section 2 we show that many well—known multivariate densities have the C—

ordered property for C, the permutation group. In fact, each density may be used

as the kernel IC for the preservation of C—monotonicity under the integral transform

f K(X ,x) f (x) dp (x).

We show that the class of densities proportional to exp —
~~~ 

~~ 
lxi —

i—i

where a,O 0, has the C—ordered property for C, the group of sign changes and per-

mutations. Finally we determine the reflection group C for which any elliptically—

contoured density has the C-ordered property.

In Section 3 we apply the theory of C—ordered functions to a class of hypothesis

testing problems. ~or a given testing problem we determine sufficient conditions on

the model such that the power functions of a well—defined class of tests have a C—

monotone or a C-ordered property. We apply our results to both parametric and non—

parametric models, each of which contains a wide variety of linear models as well.

— ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ - O 1 ~~1..
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2. C—ordered Densities in Statistics. 
.0

In the first part of this section we show that each of a number of well—known

densities may be used as the kernel function of the integral transform for the pre—

servation of C—monotonicity. We make use of the main theorem for the preservation

of C—monotone functions and its corollaries (Theorem 4.15, Corollaries 4.17, 4.18,

4.19, 4.20, and 4.21 of Part I). In the second part of this section we discuss

elliptically—contoured functions. These functions possess the C—ordered property

for some reflection group. Notable examples of elliptically—contoured densities are

the multivariate normal, the multivariate T, and the multivariate Cauchy.

Throughout this sectton and the section to follow, let be the class of

all kernels K on R2’
~ which preserve C—monotonicity under the following integral

trans form with respect to the measure p :

h(A) — J IC(A,x) f(x) d~(x).

Let R°~ and denote the set of points in Euclidean n—space whose coordinates

are nonnegative real numbers and nonnegative integers respectively.

Theorem 2.1. Let ~~ defined on A~ x X~, i — l,2,...,7, be the jth density

listed in 1—7 below. Let C be the permutation group acting on R~ and let *

be the counting measure on X~. Then Ki e for i l,2,...,7.

(1). Multinomial.
I

K1(l ,x) .N ! 1! ~
‘ , . The set A1 R and the set

i—l X~•

— ~ R~ : x~ — 0,l,...,n, i l,2,...,n, and 
~ 

x~ — N).
i— I.
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I
(2). Negative Nultinomial.

0 0

F (N + ~ 
x~) -N- ~ x~ xi—l I ~ •I i—l n n+K2O~,x) — rfw~ 

+ ~ II —~--r . The set A2 — it and the
‘
~ i—l i—I. 1

set X2 — Z ~ ’~.

(3) . Multivariate Poisson.

min x

IC3(X ,x) — e~~~ 
+ + + A~ ) l~~ �n~~~~ 

The set A3 — and the
iu’l i• i_l i i. II

set X3 — Z ~~~.

(4). Multivariate Hypergeoinetric.

n ~~ / ~ ~1 n+K4(A,x) — 

i~l ~~ / i—i . The set A4 — R and the 
s:t 

X4 Xx —

• {x ~ R~ : x~ — O,l ...,N, i — 1,2,...,n, and ~ x1 — N c 
~i—i i—l

(5) . Negat ive Multivariate Hypergeometric.

n
N! r(~ Aj ) n r(xi + x~)

K~(X ,x) — 1! ,~~~~ 
.
~ 

• The set A~ — it and the set
.1 fl I ~ ~ 1—1 ~‘i’ 

-,
it x~!r~N +  ~i—i ‘ i l  ‘

X5 — {x e it” x~ O ,l,...,N , i l ,2 ,...,n , and 
~ 

x1 — N ) .

(6). Dirichlet Compound Nega tive Multjnomj al.

r(N + 
~ 

x~J r(e 
+ 

~ 
xj r(N + e) n r(x~ + xi) 

0+K (A ,x) — IT .~ . The set A6 — it

fl x~! F(N) F(O) r~ + e + ~ (x~ + xi)) 
~~‘

i—i i—i

0+and the set X6 Z

________________________ _________________— i i i ~ . ~~~~~~~~~~~~~~~ _____
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(7). Dirichlet Compound Multinomial.

N ! F ’ Z  A
• 

• 

~i—l ~ n r(X
~ 

+ x1)K,(A ,x) — • IT . • The set A, — R and the seta •1~~
_
~ ‘j ’

FIN + ~I. 
~~~~

a
X
7 

— ~ R~ : x1 — O l ,...,n , i — l,2 ...,n, and ~ x1 — N ) .

i—i

Proof. Note that p, the counting measure, is translation invariant and is

also C-invariant when C is the permutation group acting on R”. For A —

and X~ are C—invariant subsets of it”.

(1). Let $(A ,x) be the density of n independent Poisson random variables with

parameters A1,A2, . .., A , and note that • has the generalized semigroup property

with respect to counting measure. Define L~(x) — 
~ 

x~ and
i—I.

K(Z(A) , £(x) — , where is the density of a univariate Poisson random
K(Z(A), t(x))

A A A
variable with parameter t(A). Define the transformation TA — 

(ec ’~ 1 ••. ’t?i~))
and the function K1(TA ,Tx) — +(A,x) K(t(A), L(x)), so that K1 is the density of a

multinoisial random variable with parameter TX. Clearly A 2 ~ if and only if

TA 2 TA . We thus conclude that K1 c KG,~ 
by Corollary 4.19 of Part I.

(2) We obtain the negative multinomial by mixing n independent Poisson random

variables according to a gamsa distribution. Thus IC2 has the C-ordered conditional

generalized semigroup property and consequently K2 £ KG by Corollary 4.17 of

Part I.

-
~~~~~~~~~ 

- 
- __
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• (3). Suppose that U,X1,X2,...,X are independent Poisson random variables with

parameters F ,A1,A2,...,X respectively. Define — U + X1, A — l,2 ,...,n . Then

1(
3 is the joint density of Y1,Y2,. .•Y . The conditional joint density K

~
(A ,x)

of Tl’~ 2’ ”’Tn has the C—ordered generalized semigroup property . Thus 1(3 has

the C-ordered conditional generalized semigroup property and consequently 1(3 £ K~ u

by Corollary 4.17 of Part I .

(4) . The imaltivariate hypergeonietric distribution is the conditional distribution

of n independent binomial random variables given their sum. An argument analogous

to that which we used to show that K e K,, may be used t’, show that K, e K1 ..~~~~~ 
.,

(5) . Let •(8,x) be the multinomial density and *(8,A) be the Dirichlet density.

Then IC5(X ,x) — f $(B, X) •(B, x) d~*(x) , where u* is Lebesgue measure. We establish

in Theorem 2.2 below that * e 
~~~~~ 

Thus as a consequence of Corollary 4.20 of

Part I we conclude that K E K
S G,;i

• (6) and (7) . We invoke Corollary 4.20 to conclude that K ~K7 € K 4 (
‘p

Theorem 2.2. Let K~, defined on A~ x X~, A — l,2 ...,5, be the 1th density

listed in 1—5 below. Let C be the permutation group acting on ~
n and let p be

Lebesgue measure on X1. Then K~ € KC U  for i — l,2,...,5.

(1). Dirichlet .

r Ie+ ~ x lI. ij ( n •~O—1 n A —I.
K1(A ,x) — ~~~~~~ 

~1 — 

~ x1~ it x~ • The set A1 — R0+ and the setn 
~ 1—1 1.1

• F(O) it F(X )
i—i i

n
— (x € it” : x~ � 0, i — l,2,...,n, and 

~ 
x~ � 1).

A—’

10. 
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

___ •~~~OO_ _~~~~~~~~~~~~~~~~•j~~~
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(2) . Inverted Dirichiet .

a ~ n X — lr.1e + ~ it
— . • : 

i—l i—l 
a . The set A 2 — X

2 
—

a n
r(e) U rCA 1) ~1 + ~ 

xjj ~~~
i~l i—i

(3). Multivariate Caimia .

u0
~
1 ! (x1 

- u) i exp{(n - 1) u - 
~~ 

x~ )

K3(A ,x) ) du. The set
0 ii r(A )

i—i A

A3 - — it0+
.

P
10.

(4). Multivariate F.

a A n  A — i
F( A ) if (2X~ ) ~ IT xi

K4 (X ,x) — . The set A4 — X4 • it
0+

.

n a
2 11 r(A1) (~ + } A1x~)ii.0 

A
i—0 i—i

(5) . Multivariate Normal.

2a x1 ex p —~~ ~ ~~~~
— . The set A u . R 0+ and the set X~~” R °. .

i—l i
(211)” if A j Ji—i

Proof. Note that p, the Lebesgue measure , is translation invariant and is also

C—invariant when C is the permutation group acting on it” For A — l, 2,...,5, A1

and X1 are C—invariant subsets of R”.
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Suppose ~~~~~~~~~~~~ are independent chi—square. random variables with

A ,A1,...,A degrees of freedom respectively . Let — x~( ~

‘ 

~xj}~~~, j  —

The joint density of Y1,Y2,...,Y is a Dirichiet density. We appeal to Corollary

4.21 of Part I to conclude that € K0 ~~~
•

(2) . Suppose X ,X1,..., X are as in (1) above . The joint density of ?~ X~IX 0 ,

• j  • l,2,...,n, is an inverted Dirichiet distribution. The conditional distribution

K
~

(A ,x) of Y1,Y2, ... ,Y given X0 — u has the C—ordered generalized semigroup

property with respect to Lebeague measure . Consequently , 
~2 has the C—ordered con—

Iitional generalized seinigroup property and thus by Corollary 4.17 of Part I ,

K e K• 2 G ,p

(3) Suppose ~~~~~~~~~~ are independent gamea random variables with respective

cale parameters A ,X1,...,A and comson shape parameter 0. The joint density of

— X0 + X~ j  — l ,2 ,...,n is mu].tivariate gamea and it has the C—ordered conditional

generalized semigroup property , so that 1(
3 e K0 as a consequepce of Corollary 4.17

of Part I.

(4) . Suppose X0.X1~~•..~ X~ are independent chi—square random variables with re—

X /2A;
spective degrees of freedom 2X0,2A1,...,2A . Let — x0/2A0’ 

~ — l,2 ,...,a. The

joint density of Tl’T2 ’ ’ ~ n is the inultivariate P density and it has the

C—ordered conditional generalized semigroup property. Thus we use Corollary 4.17

of Part I to conclude that 1(
4 e KG ~~

_ _  • •• •±~~~~~~~~~~ • •~~~~~~~~~~~~~~ .~~~~~~ • ~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _.

~~
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(3). The density K~ has the 0-ordered generalized semigroup property so that

by Theorem 4.15 of Part I we conclude that 1(
5 e K0~~.f I

We note here that Hollander , Proachan , and Sethurainan (1977) have shown that

the multivariate logarithmic series and the multivarlate Pareto densities are C—

ordered f or the permutation group . We have been unable to determine if either of

these densities are elements of K
G U  for any translation invariant and C—invariant

measure p .

Consider the class of densities of the form:

1C (A ,x) — c • exp — 
~~ Jx1 — A1J ° , a,0 > 0.

i—i

When e • 1 and c — (2a)’~, IC (X ,x) is the joint density of a independent random

variables from the univariate Laplace or double exponential distribution. Densities

of this form are C-ordered for the group of permutations and sign changes. Stated

formally:

Theorem 2.3. Let K(A ,x) — c • exp — ~ I 1z1 
— , where a ,0 > 0 and

1—1

e R’, i — l,2,...,a. Let C be the group of permutations and sign changes .

Then K is C-ordered.

Proof. Since K is of the form f(z A), it is equivalent to show that

f (x) — c • exp — I 1x11 0 is C—monotone decreasing. Since exp — I l i e
i—i i—i

is a decreasing function of I Ix i°, it suffices to show that g(x) — I 1x1I°
i—i i—i

is C-monotone increasing. Now g is a smooth C—invariant function, so that g is

~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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C—monotone increasing if and only if (r x) (r Vg) � 0 for all x e R1’ and all

r e . A fundamental set of roots for G,b~, is the set Cr1, i — 1,2,...,n}

u(ri i+l, i — 1,2,...,n—l}, where r ~ (O ,...,0,1,0,...,0) and

— (0,...,0,l//i,—1//i,O,...,0). it is easy to check that (r x)(r’Vg) � 0

for all x e and all r e A~ . Thus f is C—monotone decreasing and as a conse-

quence of Theorem 4.10, K is C—ordered .~~J

We now turn our attention to elliptically—contoured densities, which have the

form c • f(x Bx), where B is positive definite. For any quadratic form ,

d~f X B X , with B positive definite, there exists a reflection group

for which is C—monotone increasing. If f is a decreasing function and

K(A,x) c • f f (x  — — A ) ) ,  then ~ Is GB_ordered . We now present this

• result formally.

Lema 2.5. Let B be an N x N matrix. Let

P — [r~~ ... ~~~ ... ~~~ ... r0~~] — 1P1 
P~) be a diagonalizer of

B such tha t ~~~~~~~~~~~~~ is a set of orthogonal eigenvectors corresponding to
A

the eigenvalue A
1 

and a basis for the subspace V
1, 

I l,2,...,k. Let

[01
D _ 1  0

2
0 ,

[ o

where 0~ is any n~ x ni orthogonal matr x. Let M - PDP . Then ~~~ - UM.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~ . - à. ~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______________________
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Proof . Define
— 

• • • •

.
.A
1

• 0

A —  A2

0 Ak

Ak

• and note that Di — AD. Now MB PDP PAP — PDAP = PADP~ — PAP PDP~ = BM, as

desired.II

We now present a theorem which describes the group C for which the quadratic

form, Q8(x) — x B x , is C—monotone increasing. Denote the group

Theorem 2.6. Let V~, I — 1,2,...,k, be the subapaces of R~L whose bases are

the sets of orthogonal left eigenvectors corresponding to the distinct eigenvalues

Al, A2,...,Ak of a positive definite matrix B. Then 0
8 

0(V
1
) x 0(V

2
) x x 0(Vk).

where 0(Vi) is the orthogonal group acting on V1, A

Proof. Let the dimension of V~ be a
1 and note that 0(V1)

A — 1,2,...,k.

(A). We show that for any g e CB~ (gx)
#B(gx) — x Bx. Now g is of the

form PDP~ as in Lemma 2.5, so that gB — 8g. Thus (gx) B(gx) — x g f l g x  — xggBx
— x 8x.

(ii). We show that for y e C~ (,~ (the convex hull of the 0
8
—orbit of x),

B

xix � y By. Write x - x1 + x2 + ... + and y - y1 + ~2 
+ ~ + 

~k’ 
where

xj,yi e V~, i — l,2,...,k. That y £ C0(x) is equivalent to x~#xi � yj yj’

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
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A — l,2 ...,k. Now xBX — x PAP x — ~ x~~P~A ~~~~ ~ A~x1 x1 ,~. ~li: A1
y1

4y
1i—l i—l - 

i—i

• r~i~• • . •o1
— y By, where A1 — I. Thus we have shown that fix � y#By whenever

y € C
~
(x).II
B

Application 2 .7. A general class of multivariate distributions has density

function K(A,x) proportional to exp{—v~~[(x — AYB(x — A ) ] .hI’2 }, with B positive

definite and v > 1. (See Johnson and Kotz (1972) p. 298.) For a fixed B, any

density of this form is GB—ordered. Note that for v — 2, K(A ,x) is the multivariate

normal density with mean A and variance—covariance matrix B ’.

Application 2.8. Let X be a multivariate normal random vector with mean A

and varjance—covarlance matrix B ’. Define Y — (/~/S)x, where S is a chi—square

random variable with v degrees of freedom, independent of X. The random vector

Y with multivariate T distribution Is C8—ordered , as in Application 2.7. Note

that when B is the identity matrix and the number of degrees of freedom v is

one, we have the imiltivariate Cauchy density. In this case GB o(RN).

0.~~~~~ 

— TiT T~~:~~ ~~~~~~~~~~~~~~ 
---
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3. Applications to Hypothesis Testing.

In this section we present some applications in hypothesis testing. The main

thrust of the section is the demonstration of monotone properties of power functions.

Let X be an n—dimensional random vector with density K(X,x) on A x

where A and X are subsets of V, a linear subspace of R~. We wish to test

either of the following hypotheses.

(1). : AlA — 0 versus H
1 
: AlA ~ 0.

(2) . H : A~A € F versus H1 AIX ~
Here F is a closed fundamental region for a group C and A1 is an a x k matrix,

k � a. The linear transformation on V defined by Aj yields a space , A?, whose

dimension is at most the dimension of V. One obvious method for testing both (1) and

(2) is to transform the space of observations by means of A and base a test on

some function of Aix, where x is an observation from K(A ,x). Denote the density

of AjX by $(A~X~A~x) and suppose that it is an element of K0~~ for some trans—

lat!~on and C-invariant measure p . Then any test of (1) based on

Cf — Cu € A’X : f(u) > c0}, where f is C—monotone increasing, has a C—monotone

increasing power function. This is an immediate conseauence of Theorem 4.15 and

its corollaries in Part I. If the density • is G—ordered , then any test of (2)

based on Cf — Cu c A X  : f(u) > c } , where f is C—ordered with respect to F,

has a power function C—ordered with respect to P. This is an immediate consequence

of Corollary 3.15 of Part I.

Our main interest in this section lies in special cases of the hypothesis

testing problems (1) and (2) above. Suppose that A — [A 1 : A21 is an element of
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the &thogonal group acting on V and, for some reflection group C, A A G

(A1 ~ O] A~ u (0 : A2YA~. Under certain assumptions on K(A ,x), the density of X,

the power functions of tests presented below have monotonic properties. We do not

require that the distribution of the test statistic be computed nor do we need to

determine if that distribution has a C—ordered property.

• We now present some technical lemmas to set the stage for the main theorem

embodying the results described above. We also summarize the discussion on the de-

composition of reflection groups in Benson and Grove (1971) . Many of the results

below depend upon the decomposition of a reflection group.

As a preliminary, note that for any reflection group C acting on V , the

;:roup ~~~ {A gA : g € C), where A E 0(V), is a reflection group acting on AV.

Lemma 3.1. Let V be a subspace of R~ and suppose that A € 0(V). Then

o~- ~.ny reflection group C, x y if and only if A x  Ay .

Lemma 3.2. Let V be a subspace of R~ and suppose that A £ 0(V). Then for

~.ny reflection group C, g
~ g2 if and only If A~g1A ?

C A g 2A , where — A F 0.

Now we proceed with a short discussion on the decomposition of a reflection group.

tot C be a reflection group acting on V. Suppose that is a set of fundamental

~~~~ for C and that — 4 u 4, with 4 and 4 non~~pty and 4 j  4. Let

~ be the subspace of V spanned by 4, A — 1,2. Then the restriction MT IV 2 ia

the identity transformation on V2 for each r
1 € 4; also, the restriction Mr lv~

is the identity transformation on V1 for each ri £ 4. Set C~ — (g(v1 : g cC) •~~~

‘rn — (g~V2 : € c C), so that for i — 1,2, C~ is generated by the reflections.1:
-

~~ — —
--- JTT -

~~~~~ 
—:T~iii

- 
- 

~~~~~~~~ i
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Mr IV1 along the roots r~ € 4. Each g € C can thus be expressed as glV, • g~V2

acting on V1 • V2. It follows then that C is isomorphic with C~ x C2 acting on

Vi • V2.

We now present some additional lemmas whose proofs rely on the decomposition

result above.

Leems 3.3. Let C be a reflection group acting on V and let A — (A1 ~ A2]

• be an element of the orthogonal group acting on V such that A~A~ — (A1 : 01 A~

u (0 
~ 
A2]~&~. Define — ((A1 ~ 01 g(A1 01 : g e C) and

C2 — (10 A2] g[0 A2] : g c C). Then ~~~, the reflection group generated by

is isomorphic with C] X C2 acting on AlT — IA1 : o]’v • (0 
: A2 ] V .

-. 

Proof. We have that A~~~ — [A1 0YA~ u (0 
: A21~~ and (A1 

:

1 [0 ~ A2)~~~. Since for any g c C, [A1 • OVg(A1 : 0] is the restriction of

j  d~f A~gA to the space (A1 
: O1lT and [0: A21 g(0 : A2] is the restriction of

to the space (o 
~ 
A21V , we conclude that is isomo~phic with C1 x 

~2 acting

on [A1: 0]’V I ( 0 : A 2 ]lT .l I

— (A)Lemma 3.4. Let C, C, C1, C2, and A be as in Lemma 3.3. Define x

— ~~ + ,41), i — 1,2, where ,41) € (A~ 0 ] V  and ~~~ c (0 ~ A2]’V. Then the

following statements are equivalent.

2(1). x ’)�r1 x~
), j _ l ,2.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T~~~~~~~~J~
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(2). ~(1) 
~ ~(2)

(3) . Ax~
1
~ ~

Proof. That (2) and (3) are equivalent is a consequence of Lemma 3.1. To •

show the equivalence of (1) and (2), we note that the restriction M
rI(Al 

0)17

Ia the identity transformation on (A 1 0)IT for each r € (0 ~ A2YA~. Also

the restriction MrI(0 : A21V  is the identity transformation on 1~ : A2 111 for

each r c (A1 0]A~. Thus ,41) and x~
2
~ are equivalent under ~2—majorization

and ~~~~~~~~~ and x~
2
~ are equivalent under ~1—majorization. Consequently,

x~
’
~ ~~ ~~~~ ~ - 1,2, if and only if x~~ ~ ~~~~

Lemma 3.5. Let C, C, 
~l’ ~2’ 

and A be as in Lemma 3.3. Define

— • ~~~~~~~~~~~ where g~~) ~ C1 and € C2, I — 1,2. Let be a

• closed fundamental region for C1, A — 1,2, and define F F1 • P2 Then the

following statements are equivalent.

(1). ~~~ ~
j ~(2), :i — 1,2.

(2). ~~~

4~;(3). Ag’ ‘A ~ Ag’ ‘A .

Proof. That (2) and (3) are equivalent is a consequence of Lemma 3.2. An

argument analogous to the one used in the proof of Lemma 3.4 establishes the equi—

valence of (1) and (2).II

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

-~~~~
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• Lemma 3.6. Let C, C, C1, C2, and A be as in Lemma 3.3. Let h be C-monotone

increasing (decreasing) on V. Then i~(x) — h(Ax) is C1—monotone increasing

(decreasing) on AV.

Proof. Suppose x,y e A~.’. Define x — x
1 

— x2 and y — y
1 + y2, where

C1c (A1 : 0111 and x2,y2 e (0 : A2]17. Suppose x1 � y~ and x2 — y2. Then

z y and consequently Ax Ay. Thus i~(x) — h (Ax) � h(Ay) — 1(y).II
Lemma 3.7. Let C, C, C1, G2, and A be as in Lemma 3.3. Let f be C-ordered

with respect to P on C. Then ~ (g) = f(AgA ) is ~1—ordered with respect to

(A1 : O]’P on C.

7
_ (1) (2) (1) (2)Proof. Suppose g1,g2 c C. Define g

~ 
g1 ~ g1 and g2 — g2 •

• where g(i) g~i) 

~ 
A = 1,2. Suppose that g~~ 

~~~~~~ 
g~2) and that g~~) g~2)

is the identity transformation on [0 • A21V . Then g A F  g2 and consequently

Ag1A ~ Ag2A~. Thus — f(Ag1A
’) � f(Ag

2
A ’)  • I(g2) . J

Results similar to the one shown in Lemma 3.7 exist for C—ordered functions on

V2 and also for functions C—ordered with respect to F on V.

We now present two theorems which embody our main applications in the area of

hypothesis testing. Sufficient conditions are determined under which power functions

of certain tests of multivariate hypotheses are C-monotone increasing or C—ordered

with respect to a closed fundamental region F.

Theorem 3.8. Let C, 
~ ~~~~~~~ 

C2, and A be as In Lemma 3.3. Let K(X,x), defined

on A x X, be an element of and suppose that f is C—monotone increasing on X.
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Then the power function of a test of H A A  — 0 versus H A A  � 0 based
0 1 1 1

on Cf Cx e X : f(x) > c0
} is C1—monotone increasing on A~A.

Proof. Define h( A )  = f K(A ,x) IC (x) du(x), so that h is C—monotone in—
I

creasing on A as a consequence of Theorem 4.15 or one of its corollaries. Then

the power function h(A) — h (AA) is ~1—monotone increasing on A A  by Lemma 3.6.11

Theorem 3.9. Let C, C, C1, C2, and A be as in Lemma 3.3. Let K be C—ordered

on A x X and be absolutely continuous with respect to a G—invariant measure p .

Let f be C-ordered with respect to F on X. Then the power function of a test

of H : A~A £ P versus H1 AIX 4 F based on Cf — Cx c X f(x) > c} is C1—

ordered with respect to [A1 • O J F  on A A .

Proof. Define h(A) — f K(X,x) (x) dp(x), so that h is C—ordered with
I

respect to F on A as a consequence of Corollary 3.14. Then the power function

i~(A) — h(AA) is ~1—ordered with respect to (A
1 

• 0]P on A A  by Lemma 3.7 and the

comment following it. II
Example 3.10. Suppose a random vector X has an elliptically—contoured density,

i.e. the density of X, K(X,x), defined on A x X , has the fo rm c g((x — AYB(x — A ) ] ,

where B is positive definite and g is a decreasing function. Let

P — ‘
~n~
’
~ ~ 

... rf~ ... r~~~~J — [P~ P
kJ be a diagonalizer of

B such that ~~~~~~~~~~~~~ is a set of orthogonal eigenvectore corresponding to
i

the eigenvalue a~ and basis for the subspace V~ , I — 1,2,. ..,k. The density

a—’—- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
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K(A ,x) is C-ordered for the group C — 0(v1) x 0(V
2) ... x Define

— : ... : and ~ (2) 
~ ~~~ i � j  � k , so that

— ~~~1) : or~ ~ (0 : ~ (2)~~.~* Note that the group ~~n.r*ted by P A ~ is

0(P 171) x 0(P ’V2) x .. x °~~
11k~’ 

the group generated by ~~ 1) ~ 0] is

— 0(P111) x 0(P’V2) x ••.  x 0(P V~~)~ and the group generated by [0 : ~(2)]..A*

18 G2 — 0O’11
~ +i. 

x o(P lT
~+2) x •~~~~ x O ( P V k). As a consequence of Theorem 3.8 , 

.•

—‘(1)’the power function of any test of H : P~ A — 0 versus H
1 

: P
, 

A x 0 based on

Cf 
— Cx € X : f (x) > c), where f is C—monotone increasing, is ~1-monotone increasing.

Tests of this form include tests of certain specified orthogonal contrasts.

As a specific case of Example 3.10, suppose the parameter space A is generated

by the rows of the design matrix for a simple one—way analysis of variance lay

out . Def ine

r1P P1
B — p 1 p , —~~ c p <

[~~Plj

Then

r “i “~ r ’1/ 1 111
~1

P — J —i// i i//~ lf/ ~ 
~
, ~~~~ — l//~ l//~ J , and ~(l) 

~~~~~~~~ I.
L o -2//i lI1~j  L 0 -2/4J Li”.~]

Define A — X3~4
B, where 0 € II~. Then

~~~ A — i ~~2 — 03)//i

Lco 2 + 03 — 284)/4J

I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T T . J~T~~J~
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and any teøt of H0 : P2 A — 0 versus H1 : P2 a 0 based on

Cf — Cx € X : f(x) > c}, where f is C—monotone increasing, has a G1—monotone

increasing power function. It this case is 0(R2) and the test is actually

equivalent to a test of 02 
— 03 

— 84~

Example 3.11. For p, a1, a2, ~~ 82 c R
’, define

p + a +821

~ + U2 +

p + + 82
7

Note that parameters of this form may arise from a two—way analysis of variance
layout with no interaction. Suppose we desire to test H

~ 
: U

1 
— U2 versus

~ Define the orthogonal matrix

— 

112 ~ i//i 0 1/2

1/2 : —i//i 0 1/2
A — [ A 1 A )—2 —1/2 0 i/li 1/2

—1/2 ~ 0 —i//i 1/2

so that AjA — a1 
— a2 . Let be the group of sign changes acting on

V1 
— Cx c : x

1 € R1 and x2 
— x3 — x4 — 0) and let C2 be any reflection group

acting on V2 • Cx c R
4 x1 — 0 and X2,~~3,z4 

c R1}. Define C ~~ ~2 
and

— M~~. If the observation vector X has a density K(A,x) belonging to

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
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then any test of H : a1 — a2 based on Cf — Cx € R4 : f(x) > c i ,  where f is

C-monotone increasing, has a G1-monotone increasing power function.

There are numerous examples in which Th3orems 3.8 and 3.9 can be used to show

monotonicity properties for power functions of tests of multivariate hypotheses.

We may, for instance, apply both theorems to hypothesis tests involving the general

linear model of the form Y — X$ + s, where c is a random vector having density

g(x) on V. For the general linear model the parameter space A of Theorems 3.8

and 3.9 is the linear space spanned by the columns of V and the density of the ob—

servations K(Ax) — g(x — A), where A — XB.
Illustrations of the usefulness of Theorems 3.8 and 3.9 include a wealth of

rtonparametric tests. We may consider, for example, variables used in testing cer- 
7

tam iaul tivartate hypotheses to be the signs, ranks, or signed ranks of a set of

observations. We then use Theorems 3.8 and 3.9 by allowing K(A ,x) to be the fee—

r1i~ncy function of the signs, the ranks, or the signed ranks of a set of observatic~~.

~iy well—known nonparametric tests of hypotheses can be formulated to fit the

aesum~,ttcns of Theorems 3.8 and 3.9, so that monotonicity properties for the power

.tnction.~ i diately ensue. These Include the sign test of Fisher, the rank sum

and the signed rank tests of Wilcoxon, and the test for equal treatment effects of

i(.ruska1 and Wallis. In each case the usual assumptions are such that the assumption

of Th.oreis 3.2.8 are satisfied. The rankljke tests of An.ari and Bradley and of

Moses for determining equality of dispersion can be eh~vn under the usual aesumptions

to have monotonic power functions using Theorem 3.8 • The test for ordered alterna-

tives agains t a null hypothesis of equal treatment •ffects p~.sented by Jonckheere

can be reformulated to fit the assumptions of Theorem 3.9. Cot~s.quent1y , the usual

assumptions of the model dictate that Jonckh.ere’s test has a C-ordered power function.

It is important to note that in all these examples observations were assumed to be
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ni~tua1ly independent. We have indicated, through Theorems 3.8 and 3.9, sufficient

conditions on the joint distribution of the observations under which power functions

are monotone. Independence of observations in most cases is not at all a necessary

assumption.

I

_ _ _ _ _ _ _ _ _ _ _ _ _ _  
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